## INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Third Year, 2014-15

Statistics - III, Midterm Examination, September 9, 2014

- 1. Suppose  $Z_1, \ldots, Z_5$  are i.i.d.  $N(0, \sigma^2)$ . Let  $\mathbf{X} = (X_1, \ldots, X_5)'$  where  $X_1 = Z_1$  and  $X_{i+1} = X_i + Z_{i+1}$  for  $1 \le i \le 4$ .
- (a) Find the probability distribution of X.
- (b) Find E(X'AX) where A = 11'.
- (c) Find the probability distribution of  $(X_5 X_3)^2 + (X_3 X_1)^2$ . [10]
- 2. Consider the model  $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$ , where  $\mathbf{X}_{n \times p}$  has 1 as its first column and may not have full column rank; also  $\epsilon \sim N_n(0, \sigma^2 I_n)$ . Let  $\ddot{\beta} =$  $(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{Y}$  and  $RSS = (\mathbf{Y} - \mathbf{X}\hat{\beta})'(\mathbf{Y} - \mathbf{X}\hat{\beta})$ , where  $(\mathbf{X}'\mathbf{X})^{-}$  is any generalized inverse of (X'X).

Find the joint distribution of  $(\frac{1}{n}\sum_{i=1}^{n}y_i, RSS)$ . [10]

3. Consider the following model:

$$y_1 = \alpha - \delta + \epsilon_1$$
  
$$y_2 = \delta - \gamma + \epsilon_2$$

$$y_3 = \alpha - \gamma + \epsilon_3$$

$$y_4 = -\alpha + \delta + \epsilon_4$$

where  $\alpha, \delta, \gamma$  are unknown constants and  $\epsilon_i$  are uncorrelated random variables having mean 0 and variance  $\sigma^2$ .

- (a) Show that  $\alpha 2\delta + \gamma$  is estimable. What is its BLUE?
- (b) Does there exist a BLUE for  $\alpha + \gamma$ ? Justify.
- (c) Find an unbiased estimate of  $\sigma^2$ .

[15]

- 4. Suppose  $X \sim N_n(0, \sigma^2 I_n)$ ;  $A_i$ ,  $1 \le i \le p$  are symmetric  $n \times n$  matrices
- of rank  $k_i$ , and  $A = \sum_{i=1}^p A_i$  has rank k. Then show that (i)  $\mathbf{X}'A_i\mathbf{X} \sim \chi^2_{k_i}$ , (ii)  $\mathbf{X}'A_i\mathbf{X}$  are pairwise independent and (iii)  $\mathbf{X}'A\mathbf{X} \sim \chi^2_k$ if and only if any two of the following are true:
- (a)  $A_i$  are idempotent  $\forall i$ , (b)  $A_i A_j = 0$ ,  $i \neq j$ , (c) A is idempotent.

You may use standard results from normal theory and matrix algebra by stating them without proof. |15|